
Selected Publications – Programmable Nanomaterials
Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C; Storhoff, J. J. “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, 1996, 382, 607-609, doi: 10.1038/382607a0.
Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. “DNA-Programmable Nanoparticle Crystallization,” Nature, 2008, 451, 553-556, doi: 10.1038/nature06508.
Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K. L.; Senesi, A. J.; Mirkin, C. A. “DNA-Nanoparticle Superlattices Formed From Anisotropic Building Blocks,” Nature Mater., 2010, 9, 913-917, doi: 10.1038/nmat2870.
Macfarlane, R.; Lee, B.; Jones, M.; Harris, N.; Schatz, G.; Mirkin, C. A. “Nanoparticle Superlattice Engineering with DNA,” Science, 2011, 334, 204-208, doi: 10.1126/science.1210493.
Auyeung, E.; Cutler, J. I.; Macfarlane, R. J.; Jones, M. R.; Wu, J.; Liu, G.; Zhang, K.; Osberg, K. D.; Mirkin, C. A. “Synthetically Programmable Nanoparticle Superlattices Using a Hollow Three-Dimensional Spacer Approach,” Nature Nanotech., 2012, 7, 24-28, doi: 10.1038/nnano.2011.222.
Auyeung, E.; Macfarlane, R. J.; Choi, C. H. J.; Cutler, J. I.; Mirkin, C. A. “Transitioning DNA-Engineered Nanoparticle Superlattices from Solution to the Solid State,” Adv. Mater. 2012, 24, 5181-5186, doi: 10.1002/adma.201202069.
Zhang, C.; Macfarlane, R. J.; Young, K. L.; Choi, C. H. J.; Hao, L.; Auyeung, E.; Liu, G.; Zhou, X.; Mirkin, C. A. “A General Approach to DNA-Programmable Atom Equivalents,” Nature Materials, 2013, 12, 741-746, doi: 10.1038/nmat3647.
Macfarlane, R. J.; O’Brien, M. N; Petrosko, S. H.; Mirkin, C. A. “Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New ‘Table of Elements’,” Angew. Chem., 2013, 52, 5688-5698, doi: 10.1002/anie.201209336.
Senesi, A. J.; Eichelsdoerfer, D. J.; Macfarlane, R. J.; Jones, M. R.; Auyeung, E.; Lee, B.; Mirkin, C. A. “Stepwise evolution of DNA-programmable nanoparticle superlattices,” Angew. Chem. Int. Ed., 2013, 52, 6624-6628, doi: 10.1002/anie.201301936.
Macfarlane, R. J.; Jones, M. R.; Lee, B.; Auyeung, E.; Mirkin, C. A. “Topotactic Interconversion of Nanoparticle Superlattices,” Science, 2013,341, 1222-1225, doi: 10.1126/science.1241402.
Auyeung, E.; Li, T.I.N.G; Senesi, A.J.; Schmucker, A.L.; Pals, B.C.; Olvera de la Cruz, M.; Mirkin, C.A. “DNA-mediated nanoparticle crystallization into Wulff polyhedra,” Nature, 2014, 505, 73-77, doi: 10.1038/nature12739.
Park, D. J.; Zhang, C.; Ku, J. C.; Zhou, Y. Schatz, G. C.; Mirkin, C. A. “Plasmonic Photonic Crystals Realized through DNA Programmable Assembly,” Proc. Natl. Aca. Sci., 2014, 112, 977-981, doi: 10.1073/pnas.1422649112.
Brodin, J. D.; Auyeung, E.; Mirkin, C. A. “DNA-mediated Engineering of Multicomponent Enzyme Crystals,” PNAS, 2015, 112, 4564-4569, doi: 10.1073/pnas.1503533112, PMCID: PMC4403210.
Auyeung, E.; Morris, W.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. “Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA,” J. Am. Chem. Soc., 2015, 137, 1658-1662, doi: 10.1021/ja512116p.
Jones, M. R.; Seeman, N. C.; Mirkin, C. A. “Programmable Materials and the Nature of the DNA Bond,” Science, 2015, 347, 1260901, doi: 10.1126/science.1260901.
Kim, Y.; Macfarlane, R.J.; Jones, M.R.; Mirkin, C.A. “Transmutable Nanoparticles with Reconfigurable Surface Ligands,” Science, 2016, 351, 579-581, doi: 10.1126/science.aad2212.
Sun, L.; Lin, H.; Park, D. J.; Bourgeois, M. R.; Ross, M. B.; Ku, J. C.; Schatz, G. C.; Mirkin C. A “Polarization-Dependent Optical Response in Anisotropic Nanoparticles – DNA Superlattices,” Nano Letters, 2017, 17, 2313-2318, doi: 10.1021/acs.nanolett.6b05101.
Seo, S. E.; Li, T.; Senesi, A. J.; Mirkin, C. A.; Lee, B. “The Role of Repulsion in Colloidal Crystal Engineering with DNA,” J. Am. Chem. Soc., 2017, 139, 16528-16535, doi: 10.1021/jacs.7b06734.
Lin, Q.-Y.; Mason, J. A.; Li, Z.; Zhou, W.; O’Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P.; Aydin, K.; Mirkin, C. A. “Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly,” Science, 2018, doi: 10.1126/science.aaq0591.
Sun, L.; Lin, H.; Kohlstedt, K. L.; Schatz, G. C.; Mirkin, C. A. “Design Principles for Photonic Crystals Based on Plasmonic Nanoparticle Superlattices,” Proc. Natl. Aca. Sci. USA, 2018, 115, 7242-7247, doi: 10.1073/pnas.1800106115.
Laramy, C. R.; O’Brien, M. N.; Mirkin, C. A. “Crystal Engineering with DNA,” Nature Reviews Materials, 2019, 4, 201-224, doi: 10.1038/s41578-019-0087-2.
McMillan, J. R.; Hayes, O. G.; Winegar, P. H.; Mirkin, C. A. “Protein Materials Engineering with DNA,” Acc. Chem. Res., 2019, 52, 1939-1948, doi: 10.1021/acs.accounts.9b00165.
Girard, M.; Wang, Shunzhi; Du, J. S.; Das, A.; Huang, Z.; Dravid, V. P.; Lee, B.; Mirkin, C. A.; Olvera de la Cruz, M. “Particle Analogs of Electrons in Colloidal Crystals,” Science, 2019, 364, 1174-1178, doi: 10.1126/science.aaw8237.
Wang, Shunzhi; Du, J. S.; Diercks, N. J.; Zhou, W.; Roth, E. W.; Dravid, V. P.; Mirkin, C. A. “Colloidal Crystal ‘Alloys’,” J. Am. Chem. Soc., 2019, 141, 20443-20450, doi: 10.1021/jacs.9b11109.
Zhou, W.; Liu, Z.; Huang, Z.; Lin, H.; Samanta, D.; Lin, Q.-Y.; Aydin, K.; Mirkin, C. A “Device-Quality Reconfigurable Metamaterials from Shape-Directed Nanocrystal Assembly,” Proc. Natl. Aca. Sci. USA, 2020, 117, 21052-21057, doi: 10.1073/pnas.2006797117.