Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT OF GOVERNMENTAL INTEREST

[0002] This invention was made with U.S. government support under National Science Foundation (NSF-NSEC) Grant No. EEC-0647560 and National Cancer Institute (NCI-CCNE) Grant No. 5 U54 CA 119341. The government has certain rights in this invention.

BACKGROUND

[0003] Lithography is used in many areas of modern science and technology, including the production of integrated circuits, information storage devices, video screens, micro-electromechanical systems (MEMS), miniaturized sensors, microfluidic devices, biochips, photonic bandgap structures, and diffractive optical elements (1-6). Generally, lithography can be divided into two categories based on patterning strategy: parallel replication and serial writing. Parallel replication methods such as photolithography (7), contact printing (8-11), and nanoimprint lithography (12) are useful for high throughput, large area patterning. However, most of these methods can only duplicate patterns, which are predefined by serial writing approaches and thus cannot be used to arbitrarily generate different patterns (i.e. one mask leads to one set of structures). In contrast, serial writing methods, including electron-beam lithography (EBL), ion beam lithography, and many scanning probe microscopy (SPM)-based methods (13-16), can create patterns with high resolution and registration, but are limited in throughput (17, 18). Indeed, only recently have researchers determined ways to use two-dimensional cantilever arrays for Dip-Pen Nanolithography (DPN) to produce patterned structures made of molecule-based materials over square centimeter areas (19, 20).

[0004] DPN uses an "ink"-coated atomic force microscope (AFM) cantilever to deliver soft or hard materials to a surface with high registration and sub-50-nm resolution in a "constructive" manner (3,16, 21-23). When combined with high density cantilever arrays, DPN is a versatile and powerful tool for constructing molecule-based patterns over relatively large areas with moderate throughput (1). The limitations of DPN are: 1) the inability to easily and rapidly work across the micro and nanometer length scales in a single experiment (typically, either sharp tips are optimized to generate nanoscale features or blunt tips are used to generate microscale features) (24); and 2) the need for fragile and costly two-dimensional cantilever arrays to achieve large area patterning.

[0005] Hong et al. 2007 (J.M. HONG et al, J. Microech. Microeng. 18 (2008) 015003 (6pp)) teaches a "versatile and flexible printing microcontact process using a micromatched elastomeric PDMS (poly-dimethylsiloxane) stamp with two-dimensional arrays of pyramidal tips. Hong et al. uses thereby a single PDMS stamp to produce either dot patterns with different dot sizes or dot patterns with variable density in a 'step-print' manner by conducting multiple printing on a transitional stage (see Hong et al., abstract). However, Hong et al. fails to disclose that a tip array with a common substrate or a tip array having a rigid support, such as a glass slide, or common substrate of an elastomeric polymer. Hong et al. does also not notice the importance of having the apparatus being at least translucent.

[0006] Choi et al. 2005 (Kyung M. Choi, J. Phys. Chem. B 2005, 109, 21525-21531) discloses different photopatternable silicon elastomers with enhanced mechanical properties (see Choi et al. 2005, abstract). Choi et al. 2005 specifically discloses the preparation of a new version of stiffer photocurable PDMS stamp materials with enhanced mechanical properties that is argued to advance nanoscale soft lithography and electric elastic photopatterningability (see Choi et al. 2005, p. 21530, right column, 3rd full paragraph). Choi et al. 2005, however, is silent on the provision of a tip array having a rigid support, such as a glass slide, or common substrate of an elastomeric polymer. Choi et al. 2005 does also not discuss the importance of having the apparatus being at least translucent. Indeed, no simple strategy exists that allows one to rapidly pattern molecule-based features with sizes ranging from the nanometer to millimeter scale in a parallel, high throughput, and direct-write manner. Thus, a need exists for lithography methods that can yield a high resolution, registration and throughput, soft-matter compatible, and low cost patterning capability.

SUMMARY

[0007] The present disclosure is directed to methods of printing indicia on a substrate surface using a polymer tip array according to the attached claims. More specifically, disclosed herein are methods of printing indicia on a substrate surface using a tip array comprising a compressible polymer comprising a plurality of non-cantilevered tips each having a radius of curvature of less than about 1 µm.

[0008] Thus, in one aspect, provided herein is a method of printing indicia on a substrate surface comprising (1) coating a tip array with a patterning composition, the tip array comprising a compressible elastomeric polymer having a plurality of tips each having a radius of curvature of less than about 1 µm, "and a common substrate comprising an elastomeric layer comprising a compressible elastomeric polymer, the tip array and the common substrate fixed onto a rigid support and the tip array, common
substrate, and rigid support together being at least translucent (2) contacting the substrate surface for a first contacting period of time and first contacting pressure with all or substantially all of the coated tips of the array and thereby depositing the patterning composition onto the substrate surface to form substantially uniform indicia having a dot size or line width of less than 1 \(\mu m \), and preferably also a substantially uniform feature shape. The coating can comprise adsorbing or absorbing the patterning composition onto the tip array. The method can further comprise moving only one of the tip array or the substrate surface, or moving both the tip array and the substrate surface and repeating the contacting step for a second contacting period of time and second contacting pressure. The first and second contacting periods of time and pressures can be the same or different. The contacting pressure can be controlled by controlling the z-piezo of a piezo scanner upon which the substrate or tip array is mounted. The lateral movement between the tip array and the substrate surface can be controlled (e.g., by varying movement and/or limiting movement) to form indicia comprising dots, lines (e.g., straight or curved, formed from individual dots or continuously), a preselected pattern, or any combination thereof. Controlling the contacting pressure and/or contacting period of time can produce indicia, e.g. dots, having a controllable, reproducible size. The indicia formed by the methods disclosed can have a minimum feature size (e.g., dot size or line width) less than a micron, for example 900 \(nm \) or less, 800 \(nm \) or less, 700 \(nm \) or less, 600 \(nm \) or less, 500 \(nm \) or less, 400 \(nm \) or less, 300 \(nm \) or less, 200 \(nm \) or less, 100 \(nm \) or less, 100 \(nm \) or less, or 80 \(nm \) or less.

The specification also discloses methods of leveling a tip array disclosed herein with respect to a substrate surface.

One method includes backlighting the tip array with incident light to cause internal reflection of the incident light from the internal surfaces of the tips, bringing the tips of the tip array and the substrate surface together along a z-axis to cause contact between the tips of the tip array and the substrate surface, further moving one or both of the tip array and the substrate towards the other along the z-axis to compress a subset of the tips, whereby the intensity of the reflected light from the tips increases as a function of the degree of compression of the tips against the substrate surface, and tilting one or both of the tip array and the substrate surface with respect to the other in response to differences in intensity of the reflected light from internal surfaces of the tips, to achieve substantially uniform contact between the substrate surface and tips. The tilting can be performed one or more times and along any one of the x-, y-, and z-axes, to level the array of tips with respect to the substrate surface, e.g. as determined by uniform intensity of reflected light from the tips. The reflected light can be observed by transmission of at least a portion of the reflected light back through the tip array material in the direction of the incident light, if the tip array material is at least translucent. Preferably any substrate to which the tip array is mounted will also be at least translucent or transparent.

Another method includes backlighting the tip array with incident light to cause internal reflection of the incident light from the internal surfaces of the tips, bringing the tips of the tip array and the substrate surface together along a z-axis to cause contact between the tips of the tip array and the substrate surface, further moving one or both of the tip array and the substrate towards the other along the z-axis to compress a subset of the tips, whereby the intensity of the reflected light from the tips increases as a function of the degree of compression of the tips against the substrate surface, and tilting one or both of the tip array and the substrate surface with respect to the other in response to differences in intensity of the reflected light from internal surfaces of the tips, to achieve substantially uniform contact between the substrate surface and tips. The tilting can be performed one or more times and along any one of the x-, y-, and z-axes, to level the array of tips with respect to the substrate surface, e.g. as determined by uniform intensity of reflected light from the tips. The reflected light can be observed by transmission of at least a portion of the reflected light back through the tip array material in the direction of the incident light, if the tip array material is at least translucent. Preferably any substrate to which the tip array is mounted will also be at least translucent or transparent.

The present disclosure also shows a method of making a tip array, as disclosed herein. The method comprises forming a master comprising an array of recesses in a substrate separated by lands; filling the recesses
and covering the lands with a prepolymer mixture comprising a prepolymer and optionally a crosslinker; curing the prepolymer mixture to form a polymer structure; and separating the polymer structure from the master. The method can further comprise forming the recesses as pyramidal recesses by forming the wells in the substrate and anisotropically wet-etching the substrate. The method can further comprise covering the filled and coated substrate with a planar glass layer prior to curing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014]

Fig. 1. (A) A schematic illustration of the Polymer Pen Lithography setup. (B) A photograph of a 11 million pen array. (C) SEM image of the polymer pen array. The average tip radius of curvature is 70 ± 10 nm (inset).

Fig. 2. (A) Optical image of a 480 μm × 360 μm section of a one million gold dot array (6×6 within each block) on a silicon substrate (using a pen array with 28,000 pyramid-shaped tips). (B) MHA dot size as a function of relative z-piezo extension. The results were obtained using a polymer pen array with 15,000 pyramid-shaped tips at 25°C with a relative humidity of 40%. (C) Optical image of arrays of gold squares generated at different z-piezo extensions (using a pen array with 28,000 pyramid-shaped tips). (D) An optical microscope image of a multi-dimensional gold circuit fabricated by Polymer Pen Lithography. The inset shows a magnified image of the circuit center.

Fig. 3. (A) SEM image of a representative region of approximately 15,000 miniaturized duplicates of the 2008 Beijing Olympic logo. (B) A zoom-in optical image of a representative replica. The inset shows a magnified SEM image of the letter “e”.

Fig. 4. SEM images of a polymer pen array (A) with and (B) without a glass support. The polymer pen array with a glass support is uniform across the whole area, while the one without a glass support is wavy.

Fig. 5. (A) A photograph of an etched gold pattern on a 4 inch Si wafer fabricated by Polymer Pen Lithography using the 11-million pen array shown in Fig. 1B. The area patterned by the pen array is highlighted with a white dashed line. In the center of the pen array, greater than 99% of the pens uniformly deliver the MHA ink to the substrate during the Polymer Pen Lithography process and form well-defined structures. Reduced activity occurs on the periphery of the array, due to poor contact between the pens in the peripheral area of the array and the Si substrate. This arises from current instrument sam-

DETAILED DESCRIPTION

[0015] Polymer Pen Lithography is a direct-write method that delivers collections of molecules in a positive printing mode. In contrast with DPN and other SPM-based lithographies, which typically use hard silicon-based cantilevers, Polymer Pen Lithography utilizes elastomeric tips without cantilevers (25, 26) as the ink delivery tool. The tips are preferably made of polydimethylsiloxane, PDMS. A preferred polymer pen array (Fig. 1) contains thousands of tips, preferably having a pyramidal shape, which can be made with a master prepared by conventional photolithography and subsequent wet chemical etching (Fig. 1A). The tips preferably are connected by a common substrate which includes a thin polymer backing layer (50-100 μm thick), which preferably is adhered to a rigid support (e.g., a glass, silicon, quartz, ceramic, polymer, or any combination thereof), e.g. prior to or via curing of the polymer. The rigid support is preferably rigid and has a highly planar surface upon which to mount the array (e.g., silica glass, quartz, and the like). The rigid support and thin backing layer significantly improve the uniformity of the polymer pen array over large areas, such as three inch wafer surface (Fig. 1B, 4), and make possible the leveling and uniform, controlled use of the array. When the sharp tips of the polymer pens are brought in contact with a substrate, ink is delivered at the points of contact (Fig. 1A).

[0016] The amount of light reflected from the internal surfaces of the tips increases significantly when the tips make contact with the substrate. Therefore, a translucent or transparent elastomer polymer pen array allows one to visually determine when all of the tips are in contact with an underlying substrate, permitting one to address the otherwise daunting task of leveling the array in an
experimentally straightforward manner. Thus, preferably one or more of the array tips, backing layer, and rigid support are at least translucent, and preferably transparent.

[0017] Polymer Pen Lithography experiments were performed with an Nscriptorm system (NanoInk Inc., IL) equipped with a 90-μm closed loop scanner and commercial lithography software (DPNWrite™, DPN System-2, NanoInk Inc., IL). Depending upon intended use, the pitch of a pen array is deliberately set between 20 μm and 1 mm, corresponding to pen densities of 250,000/cm² and 100/cm², respectively. Larger pitch arrays are required to make large features (micron or millimeter scale) but also can be used to make nanometer scale features. All of the pens were remarkably uniform in size and shape, with an average tip radius of 70±10 nm (Fig. 1C). In principle, this value could be reduced substantially with higher quality masters and stiffer elastomers. For the examples below, the tip array used contained either 15,000 or 28,000 pyramid-shaped pens, but arrays with as many as about 11,000,000 pens have also been used to pattern structures (Fig. 5).

[0018] In a typical experiment, a pen array (1 cm² in size) was inked by immersing it in a saturated solution of 16-mercaptoundecanoic acid (MHA) in ethanol for five minutes followed by rinsing with ethanol. The inked pen array was used for generating 1-μm diameter MHA dot patterns on a thermally evaporated polycrystalline gold substrate (25 nm Au with a 5 nm Ti adhesion layer coated on Si) by bringing it in contact with the gold surface for 0.1 s. This process of contacting the gold substrate was repeated 35 times to generate a 6×6 array of MHA dots (less than 10% deviation in feature diameter). The exposed gold on this MHA patterned substrate was subsequently etched (20 mM thiourea, 30 mM iron nitrate, 20 mM hydrochloric acid, and 2 mM octanol in water) to yield raised structures that are approximately 25 nm in height and easily imaged by optical microscopy (Fig. 2A).

[0019] A defining characteristic of Polymer Pen Lithography, in contrast with DPN and most contact printing strategies which are typically viewed as pressure or force-independent (21), is that it exhibits both time- and pressure-dependent ink transport. As with DPN, features are linearly dependent on the square root of the tip-substrate contact time, were fabricated by Polymer Pen Lithography and subsequent wet chemical etching (Fig. 2B). The largest and smallest gold squares are 4 μm and 600 nm on edge, respectively. Note that this experiment does not define the feature size range attainable in a Polymer Pen Lithography experiment, but rather, is a demonstration of the multiple scales accessible by Polymer Pen Lithography at a fixed tip-substrate contact time (1 s in this case).

[0020] With the pressure dependency of Polymer Pen Lithography, one does not have to rely on the time-consuming, meniscus-mediated ink diffusion process to generate large features. Indeed, one can generate either nanometer or micrometer sized features in only one printing cycle by simply adjusting the degree of tip deformation. As proof-of-concept, 6×6 gold square arrays, where each square in a row was written with one printing cycle at different tip-substrate pressures but a constant 1 s tip-substrate contact time, were fabricated by Polymer Pen Lithography and subsequent wet chemical etching (Fig. 2C). The largest and smallest gold squares are 4 μm and 600 nm on edge, respectively. This type of buffering is fortuitous and essential for leveling because it provides extra tolerance in bringing all of the tips in contact with the surface without tip deformation and significantly changing the intended feature size. When the z-piezo extends 1 μm or more, the tips exhibit a significant and controllable deformation (Fig. 2B).

[0021] Polymer Pen Lithography, unlike conventional contact printing, allows for the combinatorial patterning of molecule-based and solid-state features with dynamic control over feature size, spacing, and shape. This is accomplished by using the polymer tips to form a dot pattern of the structure one wants to make. As proof-of-concept, a polymer pen array with 100 pyramidal tips spaced 1 mm apart was used to generate 100 duplicates of an integrated gold circuit. The width of each electrode in the center of the circuit is 500 nm, while the width of each electrode lead going to these nanometer scale electrodes is 10 μm, and the size of the external bonding pad is a 100×100 μm² (Fig. 2D). Since the Nscriptorm only provides a 90×90 μm² scanner, the circuits were divided into 35 80×80 μm² sub-patterns, which were stitched together by manually moving the stage motor after each sub-pattern was generated. This limitation could be addressed by programming the movement of the stage motor relative to the positions of the multiple sub-patterns.
To accommodate both the resolution and throughput concerns, different relative z-piezo extensions at different positions of the circuit were used, where 0 (initial contact), 2, and 6 μm were used for the central electrodes, electrode leads, and bonding pads, respectively. As a result, writing a 100×100 μm² area only requires 400 printing cycles (less than 0.5 s for each cycle), and the total time required to generate 100 duplicates of the circuit took approximately 2 hr. Re-inking of the pen array is not necessary because the PDMS polymer behaves as a reservoir for the ink throughout the experiment (27, 28). This relatively high-throughput production of multi-scale patterns would be difficult, if not impossible, to do by EBL or DPN.

Tip Arrays

The lithography methods disclosed herein employ a tip array formed from elastomeric polymer material. The tip arrays are non-cantilevered and comprise tips which can be designed to have any shape or spacing between them, as needed. The shape of each tip can be the same or different from other tips of the array. Contemplated tip shapes include sphere, hemispheric, toroid, polyhedron, cone, cylinder, and pyramid (trigonal or square). The tips are sharp, so that they are suitable for forming submicron patterns, e.g., less than about 500 nm. The sharpness of the tip is measured by its radius of curvature, and the radius of curvature of the tips disclosed herein is below 1 μm, and can be less than about 0.9 μm, less than about 0.8 μm, less than about 0.7 μm, less than about 0.6 μm, less than about 0.5 μm, less than about 0.4 μm, less than about 0.3 μm, less than about 0.2 μm, less than about 0.1 μm, less than about 90 nm, less than about 80 nm, less than about 70 nm, less than about 60 nm, or less than about 50 nm.

Note that the maskless nature of Polymer Pen Lithography allows one to arbitrarily make many types of structures without the hurdle of designing a new master via a throughput-impeded serial process. In addition, Polymer Pen Lithography can be used with sub-100 nm resolution with the registration capabilities of a closed-loop scanner. For example, Polymer Pen Lithography was used to generate 15,000 replicas of the 2008 Beijing Olympic logo on gold with MHA as the ink and subsequent wet chemical etching (Fig. 3A). Each logo was generated using the multiscale capabilities of Polymer Pen Lithography from a 70 × 60 μm² bitmap. The letters and numbers, "Beijing 2008", were generated from ~20,000 90-nm dots (initial contact), while the picture and Olympic rings were made from ~4,000 600-nm dots at higher array-substrate contact pressures (relative piezo extension = 1 μm). These structures were created by holding the pen array at each spot for 0.05 s and traveling between spots at a speed of 60 μm/s. A representative portion of the approximately 15,000 replicas (yield > 99 %) generated across the 1 cm² substrate shows their uniformity (Fig. 3B). The total time required to fabricate all of these structures was less than 40 min.

A new lithography method, termed Polymer Pen Lithography, has been developed using elastomeric pen arrays mounted on an inscribing device, such as an Nscriptor™ instrument, to generate nano- and microscale features in a constructive manner. The technique merges many of the attributes of DPN and contact printing to yield patterning capabilities that span multiple length scales with high throughput and low cost. The novel time- and pressure-dependent ink transport properties of the polymer pen pyramid arrays provide important and tunable variables that distinguish Polymer Pen Lithography from the many nano- and microfabrication approaches that have been developed to date. Since Polymer Pen Lithography is a direct-write technique, it is also useful for fabricating arrays of structures made of soft matter, such as proteins (Fig. 7), making it useful in the life sciences as well.
transition temperatures such as, for example, below 25°C or more preferably below -50°C, can be used. Diglycidyl ethers of bisphenol A can be used, in addition to compounds based on aromatic amine, triazine, and cycloaliphatic backbones. Another example includes N-volac polymers. Other contemplated elastomeric polymers include methylvorosilanes, ethylvorosilanes, and phenylchlorosilanes, polydimethylsiloxane (PDMS). Other materials include polyethylene, polystyrene, polybutadiene, polyurethane, polyisoprene, polyacrylic rubber, fluorosilicone rubber, and fluoroelastomers.

Further examples of suitable polymers that may be used to form a tip can be found in U.S. Patent No. 5,776,748; U.S. Patent No. 6,596,346; and U.S. Patent No. 6,500,549, each of which is hereby incorporated by reference in its entirety. Other suitable polymers include those disclosed by He et al., Langmuir 2003, 19, 6982-6986; Donzel et al., Adv. Mater. 2001, 13, 1164-1167; and Martin et al, Langmuir, 1998, 14-15, 3791-3795. Hydrophobic polymers such as polydimethylsiloxane can be modified either chemically or physically by, for example, exposure to a solution of a strong oxidizer or to an oxygen plasma.

The polymer of the tip array has a suitable compression modulus and surface hardness to prevent collapse of the polymer during inking and printing, but too high a modulus and too great a surface hardness can lead to a brittle material that cannot adapt and conform to a substrate surface during printing. As disclosed in Schmid, et al., Macromolecules, 33:3042 (2000), vinyl and hydrosilane prepolymer can be tailored to provide polymers of different modulus and surface hardness. Thus, in some cases, the polymer is a mixture of vinyl and hydrosilane prepolymer, where the weight ratio of vinyl prepolymer to hydrosilane crosslinker is about 5:1 to about 20:1, about 7:1 to about 15:1, or about 8:1 to about 12:1.

The polymers of the tip array preferably will have a surface hardness of about 0.2% to about 3.5% of glass, as measured by resistance of a surface to penetration by a hard sphere with a diameter of 1 mm, compared to the resistance of a glass surface (as described in Schmid, et al., Macromolecules, 33:3042 (2000) at p 3044). The surface hardness can be about 0.3% to about 3.3%, about 0.4% to about 3.2%, about 0.5% to about 3.0%, or about 0.7% to about 2.7%. The polymers of the tip array can have a compression modulus of about 10 MPa to about 300 MPa. The polymer of the tip array preferably comprises a compressible polymer which is Hookean under pressures of about 10 MPa to about 300 MPa. The linear relationship between pressure exerted on the tip array and the feature size allows for control of the indicia printed using the disclosed methods and tip arrays (see Fig. 2B).

The tip array can comprise a polymer that has adsorption and/or absorption properties for the patterning composition, such that the tip array acts as its own patterning composition reservoir. For example, PDMS is known to adsorb patterning inks, see, e.g., US Patent Publication No. 2004/228962, Zhang, et al., Nano Lett. 4, 1649 (2004), and Wang et al., Langmuir 19, 8951 (2003).

The tip array can comprise a plurality of tips fixed to a common substrate and formed from a polymer as disclosed herein. The tips can be arranged randomly or in a regular periodic pattern (e.g., in columns and rows, in a circular pattern, or the like). The tips can all have the same shape or be constructed to have different shapes. The common substrate can comprise an elastomeric layer, which can comprise the same polymer that forms the tips of the tip array, or can comprise an elastomeric polymer that is different from that of the tip array. The elastomeric layer can have a thickness of about 50 μm to about 100 μm. The tip array can be affixed or adhered to a rigid support (e.g., glass, such as a glass slide). In various cases, the common substrate, the tip array, and/or the rigid support, if present, is translucent or transparent. In a specific case, each is translucent or transparent. The thickness of combination of the tip array and common substrate, can be less than about 200 μm, preferably less than about 150 μm, or more preferably about 100 μm.

Patterning Compositions

Patterning compositions suitable for use in the disclosed methods include both homogeneous and heterogeneous compositions, the latter referring to a composition having more than one component. The patterning composition is coated on the tip array. The term "coating," as used herein, refers both to coating of the tip array as well adsorption and absorption by the tip array of the patterning composition. Upon coating of the tip array with the patterning composition, the patterning composition can be patterned on a substrate surface using the tip array.

Patterning compositions can be liquids, solids, semi-solids, and the like. Patterning compositions suitable for use include, but are not limited to, molecular solutions, polymer solutions, pastes, gels, creams, glues, resins, epoxies, adhesives, metal films, particulates, solders, etchants, and combinations thereof.

Patterning compositions can include materials such as, but not limited to, monolayer-forming species, thin film-forming species, oils, colloids, metals, metal complexes, metal oxides, ceramics, organic species (e.g., moieties comprising a carbon-carbon bond, such as small molecules, polymers, polymer precursors, proteins, antibodies, and the like), polymers (e.g., both non-biological polymers and biological polymers such as single and double stranded DNA, RNA, and the like), polymer precursors, dendrimers, nanoparticles, and combinations thereof. In some embodiments, one or more components of a patterning composition includes a functional group suitable for associating with a substrate, for example, by forming a chemical bond, by an ionic interaction, by a Van der Waals interaction, by an electrostatic inter-
action, by magnetism, by adhesion, and combinations thereof.

In some embodiments, the composition can be formulated to control its viscosity. Parameters that can control ink viscosity include, but are not limited to, solvent concentration, thickener composition, thickener concentration, particles size of a component, the molecular weight of a polymeric component, the degree of cross-linking of a polymeric component, the free volume (i.e., porosity) of a component, the swellability of a component, ionic interactions between ink components (e.g., solvent-thickener interactions), and combinations thereof.

Suitable thickening agents include, but are not limited to, metal salts of carboxyalkylcellulose derivatives (e.g., sodium carboxymethylcellulose), alkylcellulose derivatives (e.g., methylcellulose and ethylcellulose), partially oxidized alkylcellulose derivatives (e.g., hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose), starches, polycrylamide gels, homopolymers of poly-N-vinylpyrrolidone, poly(alkyl ethers) (e.g., polyethylene oxide, polyethylene glycol, and propylene oxide), agar, agarose, xanthan gums, gelatin, dendrimeric, colloidal silicon dioxide, lipids (e.g., fats, oils, steroids, waxes, glycerides of fatty acids, such as oleic, linoleic, linolenic, and arachidonic acid, and lipid bilayers such as from phosphocholine) and combinations thereof. In some embodiments, a thickener is present in a concentration of about 0.5% to about 25%, about 1% to about 20%, or about 5% to about 15% by weight of a patterning composition.

Suitable solvents for a patterning composition include, but are not limited to, water, C1-C8 alcohols (e.g., methanol, ethanol, propanol and butanol), C6-C12 straight chain, branched and cyclic hydrocarbons (e.g., hexane and cyclohexane), C6-C14 aryl and aralkyl hydrocarbons (e.g., benzene and toluene), C3-C10 alkyl ketones (e.g., acetone), C3-C10 esters (e.g., ethyl acetate), C4-C10 alkyl ethers, and combinations thereof. In some embodiments, a solvent is present in a concentration of about 1% to about 99%, about 2% to about 95%, about 10% to about 90%, about 15% to about 95%, about 25% to about 95%, about 50% to about 95%, or about 75% to about 95% by weight of a patterning composition.

Patterning compositions can comprise an etchant. As used herein, an "etchant" refers to a component that can react with a surface to remove a portion of the surface. Thus, an etchant is used to form a subtractive feature by reacting with a surface and forming at least one of a volatile and/or soluble material that can be removed from the substrate, or a residue, particulate, or fragment that can be removed from the substrate by, for example, a rinsing or cleaning method. In some embodiments, an etchant is present in a concentration of about 0.5% to about 95%, about 1% to about 90%, about 2% to about 85%, about 3% to about 10%, or about 1% to about 10% by weight of the patterning composition.

Etchants suitable for use in the methods disclosed herein include, but are not limited to, an acidic etchant, a basic etchant, a fluoride-based etchant, and combinations thereof. Acidic etchants suitable for use with the present invention include, but are not limited to, sulfuric acid, trifluoromethanesulfonic acid, fluorsulfonic acid, trifluoroacetic acid, hydrofluoric acid, hydrochloric acid, carbonic acid, and combinations thereof. Basic etchants suitable for use with the present invention include, but are not limited to, ammonium fluoride, lithium fluoride, sodium fluoride, potassium fluoride, rubidium fluoride, cesium fluoride, francium fluoride, antimony fluoride, calcium fluoride, ammonium tetrafluoroborate, potassium tetrafluoroborate, and combinations thereof.

In some embodiments, the patterning composition includes a reactive component. As used herein, a "reactive component" refers to a compound or species that has a chemical interaction with a substrate. In some embodiments, a reactive component in the ink penetrates or diffuses into the substrate. In some embodiments, a reactive component transforms, binds, or promotes binding to exposed functional groups on the surface of the substrate. Reactive components can include, but are not limited to, ions, free radicals, metals, acids, bases, metal salts, organic reagents, and combinations thereof. Reactive components further include, without limitation, monolayer-forming species such as thiol, hydroxides, amines, silanols, siloxanes, and the like, and other monolayer-forming species known to a person or ordinary skill in the art. The reactive component can be present in a concentration of about 0.001% to about 100%, about 0.001% to about 50%, about 0.001% to about 25%, about 0.001% to about 10%, about 0.001% to about 5%, about 0.001% to about 2%, about 0.001% to about 1%, about 0.001% to about 0.5%, about 0.001% to about 0.05%, about 0.01% to about 10%, about 0.01% to about 5%, about 0.01% to about 2%, about 0.01% to about 1%, about 0.01% to about 0.5%, about 0.01% to about 0.05%, about 0.1% to about 10%, about 0.1% to about 5%, about 0.1% to about 2%, about 0.1% to about 1%, about 0.1% to about 0.5%, about 0.1% to about 0.05%, about 0.01% to about 0.1%, about 0.01% to about 0.05%, or about 0.01% to about 0.001% by weight of the patterning composition.

The patterning composition can further comprise a conductive and/or semi-conductive component. As used herein, a "conductive component" refers to a compound or species that can transfer or move electrical charge. Conductive and semi-conductive components
include, but are not limited to, a metal, a nanoparticle, a polymer, a cream solder, a resin, and combinations thereof. In some embodiments, a conductive component is present in a concentration of about 1% to about 100%, about 1% to about 10%, about 5% to about 100%, about 25% to about 100%, about 50% to about 100%, about 75% to about 99%, about 2%, about 5%, about 90%, about 95% by weight of the patterning composition.

[0045] Metals suitable for use in a patterning composition include, but are not limited to, a transition metal, aluminum, silicon, phosphorous, gallium, germanium, indium, tin, antimony, lead, bismuth, alloys thereof, and combinations thereof.

[0046] In some embodiments, the patterning composition comprises a semi-conductive polymer. Semi-conductive polymers suitable for use with the present invention include, but are not limited to, a polyaniline, a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), a polypyrrole, an arylene vinylene polymer, a polyphe-nylenevinylene, a polycarbonate, a polystyrene, a polyimide, and combinations thereof.

[0047] The patterning composition can include an insulating component. As used herein, an "insulating component" refers to a compound or species that is resistant to the movement or transfer of electrical charge. In some embodiments, an insulating component has a dielectric constant of about 1.5 to about 8 about 1.7 to about 5, about 1.8 to about 4, about 1.9 to about 3, about 2 to about 2.7, about 2.1 to about 2.5, about 2.8 to about 90, about 15 to about 85, about 20 to about 80, about 25 to about 75, or about 30 to about 70. Insulating components suitable for use in the methods disclosed herein include, but are not limited to, a polymer, a metal oxide, a metal carbide, a metal nitride, monomeric precursors thereof, particles thereof, and combinations thereof. Suitable polymers include, but are not limited to, a polydimethylsiloxane, a silsesquioxane, a polylethylene, a polypropylene, a polyimide, and combinations thereof. In some embodiments, for example, an insulating component is present in a concentration of about 1% to about 95%, about 1% to about 80%, about 1% to about 50%, about 1% to about 20%, about 1% to about 10%, about 20% to about 95%, about 20% to about 90%, about 40% to about 80%, about 1%, about 5%, about 10%, about 90%, or about 95% by weight of the patterning composition.

[0048] The patterning composition can include a masking component. As used herein, a "masking component" refers to a compound or species that upon reacting forms a surface feature resistant to a species capable of reacting with the surrounding surface. Masking components suitable for use with the present invention include materials commonly employed in traditional photolithography methods as "resists" (e.g., photoresists, chemical resists, self-assembled monolayers, etc.). Masking components suitable for use in the disclosed methods include, but are not limited to, a polymer such as a polyvinylpyrrolidone, poly(epichlorhydrin-co-ethylenëoxide), a polystyrene, a poly(styrene-co-butadiene), a poly(4-vinylpyridine-co-styrene), an amine terminated poly(styrene-co-butadiene), a poly(acrylonitrile-co-butadiene), a styrene-butadiene-styrene block copolymer, a styrene-ethylene-butylene block linear copolymer, a polystyrene-block-polyl(ethylene-ran-butylene)-block-polystyrene, a poly(styrene-co-maleic anhydride), a polystyrene-block-polyl(ethylene-ran-butylene)-block-polystyrene-graft-maleic anhydride, a polystyrene-block-polysiloxane-block-polystyrene, a polystyrene-block-polyl(ethylene-ran-butylene)-block-polystyrene, a polynorbornene, a dicarboxy terminated poly(acrylonitrile-co-butadiene-co-acrylic acid), a dicarboxy terminated poly(acrylonitrile-co-butadiene), a polycarbonate, a poly(carbonate urethane), a polycarbonate, a polyelethyleneimine, a polycarbonate, a poly(methyl methacrylate), a poly(methyl methacrylate-co-methyl acrylate), a polypyrrole, a poly(1,4-butylene terephthalate), a poly(propylene), a poly(vinyl alcohol), a poly(l,4-phenylene sulfide), a poly(l,4-phenylene terephthalate), a poly(l,4-phenylene ether-ether-sulfone), an agarose, a polyvinylidene fluoride homopolymer, a styrene butadiene copolymer, a phenolic resin, a ketone resin, a 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxane, a salt thereof, and combinations thereof. In some embodiments, a masking component is present in a concentration of about 1% to about 100%, about 1% to about 95%, about 2%, about 5%, about 90%, about 95% by weight of the patterning composition.

[0049] The patterning composition can include a conductive component and a reactive component. For example, a reactive component can promote at least one of: penetration of a conductive component into a surface, reaction between the conductive component and a surface, adhesion between a conductive feature and a surface, and combinations thereof. Suitable conductive features formed by reacting this patterning composition include conductive features selected from the group consisting of: additive non-penetrating, additive penetrating, subtractive penetrating, and conformal penetrating surface features.

[0050] The patterning composition can comprise an etchant and a conductive component, for example, suitable for producing a subtractive surface feature having a conductive feature inset therein.

[0051] The patterning composition can comprise an insulating component and a reactive component. For example, a reactive component can promote at least one of: penetration of an insulating component into a surface, reaction between the insulating component and a surface, adhesion between an insulating feature and a surface, promoting electrical contact between an insulating feature and a surface, and combinations thereof. Surface
features formed by reacting this patterning composition include insulating features selected from the group consisting of: additive non-penetrating, additive penetrating, subtractive penetrating, and conformal penetrating surfaces.

[0052] The patterning composition can comprise an etchant and an insulating component, for example, suitable for producing a subtractive surface feature having an insulating feature inset therein.

[0053] The patterning composition can comprise a conductive component and a masking component, for example, suitable for producing electrically conductive masking features on a surface.

[0054] Other contemplated components of a patterning composition suitable for use with the disclosed methods include thiols, 1,9-Nonanediol solution, silane, silazanes, alkynes, cystamine, N-Fmoc protected amino thiols, biomolecules, DNA, proteins, antibodies, collagen, peptides, biotin, and carbon nanotubes.

Substrates to be Patterned

Substrates suitable for use in methods described herein include, but are not limited to, metals, alloys, composites, crystalline materials, amorphous materials, conductors, semiconductors, optics, fibers, inorganic materials, glasses, ceramics (e.g., metal oxides, metal nitrides, metal silicides, and combinations thereof), zeolites, polymers, plastics, organic materials, minerals, biomaterials, living tissue, bone, films thereof, thin films thereof, laminates thereof, foils thereof, composites thereof, and combinations thereof. A substrate can comprise a semiconductor such as, but not limited to: crystalline silicon, polycrystalline silicon, amorphous silicon, p-doped silicon, n-doped silicon, silicon oxide, silicon germanium, germanium, gallium arsenide, gallium arsenide phosphide, indium tin oxide, and combinations thereof. A substrate can comprise a glass such as, but not limited to: undoped silica glass (SiO₂), fluorinated silica glass, borosilicate glass, borophosphosilicate glass, organosilicate glass, porous organosilicate glass, and combinations thereof. The substrate can be a non-planar substrate, such as pyrolytic carbon, reinforced carbon-carbon composite, a carbon phenolic resin, and the like, and combinations thereof. A substrate can comprise a ceramic such as, but not limited to: silicon carbide, hydrogenated silicon carbide, silicon nitride, silicon carbonitride, silicon oxyxynitride, silicon oxycarbide, high-temperature reusable surface insulation, fibrous refractory composite insulation tiles, toughened unipiece fibrous insulation, low-temperature reusable surface insulation, advanced reusable surface insulation, and combinations thereof. A substrate can comprise a flexible material, such as, but not limited to: a plastic, a metal, a composite thereof, a laminate thereof, a thin film thereof, a foil thereof, and combinations thereof.

Leveling of the Tip Array and Deposition of Patterning Composition onto Substrate Surface

The disclosed methods provide the ability for in situ imaging capabilities, similar to scanning probe microscopy-based lithography methods (e.g., dip pen lithography) as well as the ability to pattern a feature in a fast fashion, similar to micro-contact printing. The features that can be patterned range from sub-100 nm to 1 mm in size or greater, and can be controlled by altering the contacting time and/or the contacting pressure of the tip array. Similar to DPN, the amount of patterning composition (as measured by feature size) deposited onto a substrate surface is proportional to the contacting time, specifically a square root correlation with contacting time, see Fig. 6. Unlike DPN, the contacting pressure of the tip array can be used to modify the amount of patterning composition that can be deposited onto the substrate surface. The pressure of the contact can be controlled by the z-piezo of a piezo scanner, see Fig. 2B. The more pressure (or force) exerted on the tip array, the larger the feature size. Thus, any combination of contacting time and contacting force/pressure can provide a means for the formation of a feature size from about 30 nm to about 1 mm in size or greater.
1 mm or greater. The ability to prepare features of such a wide range of sizes and in a “direct writing” or in situ manner in milliseconds makes the disclosed lithography method adaptable to a host of lithography applications, including electronics (e.g., patterning circuits) and biotechnology (e.g., arraying targets for biological assays). The contacting pressure of the tip array can be about 10 MPa to about 300 MPa.

[0058] At very low contact pressures, such as pressures of about 0.01 to about 0.1 g/cm² for the preferred materials described herein, the feature size of the resulting indicia is independent of the contacting pressure, which allows for one to level the tip array on the substrate surface without changing the feature size of the indicia. Such low pressures are achievable by 0.5 μm or less extensions of the z-piezo of a piezo scanner to which a tip array is mounted, and pressures of about 0.01 g/cm² to about 0.1 g/cm² can be applied by z-piezo extensions of less than 0.5 μm. This “buffering” pressure range allows one to manipulate the tip array, substrate, or both to make initial contact between tips and substrate surface without compressing the tips, and then using the degree of compression of tips (observed by changes in reflection of light off the inside surfaces of the tips) to achieve a uniform degree of contact between tips and substrate surface. This leveling ability is important, as non-uniform contact of the tips of the tip array can lead to non-uniform indicia. Given the large number of tips of the tip array (e.g., 11 million in an example provided herein) and their small size, as a practical matter it may be difficult or impossible to know definitively if all of the tips are in contact with the surface. For example, a defect in a tip or the substrate surface, or an irregularity in a substrate surface, may result in a single tip not making contact while all other tips are in uniform contact. Thus, the disclosed methods provide for at least substantially all of the tips to be in contact with the substrate surface (e.g., to the extent detectable). For example, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% of the tips will be in contact with the substrate surface.

[0059] The leveling of the tip array and substrate surface with respect to one another is be assisted by the fact that with a transparent, or at least translucent, tip array and common substrate arrangement, one can observe the change in reflection of light that is directed from the top of the tip array (i.e., behind the base of the tips and common substrate) through to the substrate surface. The intensity of light reflected from the tips of the tip array gets greater upon contact with the substrate surface (e.g., the internal surfaces of the tip array reflect light differently upon contact). By observing the change in reflection of light at each tip, one can adjust the tip array and/or the substrate surface to effect contact of substantially all or all of the tips of the tip array to the substrate surface. Thus, the tip array and common substrate are translucent or transparent to allow for observing the change in light reflection of the tips upon contact with the substrate surface. Likewise, any rigid backing material to which the tip array is mounted is also preferably at least transparent or translucent.

[0060] The contacting time for the tips can be from about 0.001 s to about 60 s, depending upon the amount of patterning composition desired in any specific point on a substrate surface. The contacting force can be controlled by altering the z-piezo of the piezo scanner or by other means that allow for controlled application of force across the tip array.

[0061] The substrate surface can be contacted with a tip array a plurality of times, wherein the tip array, the substrate surface or both move to allow for different portions of the substrate surface to be contacted. The time and pressure of each contacting step can be the same or different, depending upon the desired pattern. The shape of the indicia or patterns has no practical limitation, and can include dots, lines (e.g., straight or curved, formed from individual dots or continuously), a preselected pattern, or any combination thereof.

[0062] The indicia resulting from the disclosed methods have a high degree of sameness, and thus are uniform or substantially uniform in size, and preferably also in shape. The individual indicia feature size (e.g., a dot or line width) is highly uniform, for example within a tolerance of about 5%, or about 1%, or about 0.5%. The tolerance can be about 0.9%, about 0.8%, about 0.7%, about 0.6%, about 0.4%, about 0.3%, about 0.2%, or about 0.1%. Nonuniformity of feature size and/or shape can lead to roughness of indicia that can be undesirable for sub-micron type patterning.

[0063] The feature size can be about 10 nm to about 1 mm, about 10 nm to about 500 μm, about 10 nm to about 100 μm, about 50 nm to about 100 μm, about 50 nm to about 50 μm, about 50 nm to about 10 μm, about 50 nm to about 5 μm, or about 50 nm to about 1 μm. Features sizes can be less than 1 μm, less than about 90 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, less than about 400 nm, less than about 300 nm, less than about 200 nm, less than about 100 nm, or less than about 90 nm.

EXAMPLES

Fabrication of masters of polymer pen arrays:

[0064] Shipley1805 (MicroChem, Inc.) photoresist was spin-coated onto gold thin film substrates (10 nm Cr adhesion layer with 100 nm of Au thermally evaporated on a precleaned oxidized Si <100> wafer). Square well arrays were fabricated by photolithography using a chrome mask. The photoresist patterns were developed in an MF319 developing solution (MicroChem, Inc.), and then exposed to O₂ plasma for 30 s (200 mTorr) to remove the residual organic layer. Subsequently, the substrates were placed in gold (Type TFA, Transene) and chromium (Type 1020, Transene) etching solutions, respectively.
Copious rinsing with MiliQ water was required after each etching step to clean the surface. The photoresist was then washed away with acetone to expose the gold pattern. The gold patterned substrate was placed in a KOH etching solution (30% KOH in H₂O:IPA (4:1 v/v)) at 75°C for 25 min with vigorous stirring. The uncovered areas of the Si wafer were etched anisotropically, resulting in the formation of recessed pyramids. The remaining Au and Cr layers were removed by wet chemical etching. Finally, the pyramid master was modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (Gelest, Inc.) by gas phase silanization.

Fabrication of polymer pen array:

[0065] Hard PDMS (h-PDMS) (1,2) was used for fabricating the polymer pen arrays. The h-PDMS was composed of 3.4 g of vinyl-compound-rich prepolymer (VDT-731, Gelest) and 1.0 g of hydrosilane-rich crosslinker (HMS-301). Preparation of polymers typically required the addition of 20 ppm w/w platinum catalyst to the vinyl fraction (platinumdivinyltetramethyldisiloxane complex in xylene, SIP 6831.1 Gelest) and 0.1% w/w modulator to the mixture (2,4,6,8-tetramethyltetraoxycyclosiloxane, Fluka). The mixture was stirred, degassed, and poured on top of the polymer pen array master. A precleaned glass slide (VWR, Inc.) was then placed on top of the elastomer array and the whole assembly was cured at 70°C overnight. The polymer pen array was carefully separated from the pyramid master and then used for lithography experiments. The procedure for preparing the pen arrays is shown in Figure 1A.

Patterning of protein arrays by Polymer Pen Lithography:

[0066] Tetramethylrhodamine 5-(and-6)-isothiocyanate (TRITC) conjugated anti-mouse IgG arrays were generated on a Codelink™ glass slide (GE Healthcare) by Polymer Pen Lithography. In a typical experiment, the polymer pen array was modified with polyethylene glycol silane (PEG-silane) to minimize non-specific interactions between the protein and PDMS surface. To effect surface modification, the polymer pen array was briefly exposed to an oxygen plasma (30 sec) to render the surface hydrophilic. Subsequently, it was immersed in a 1 mM aqueous solution of PEG-silane (pH 2, MW 2,000, Rapp Polymere, Germany) for 2 hr, cleaned with deionized water, and then blown dry with N₂. An aqueous solution consisting of 50 mg/ml glycerol and 5 mg/ml TRITC conjugated IgG was then spincoated onto the PEG-silane modified polymer pen array (1,000 rpm for 2 min), and the pen array was used to generate protein arrays on Codelink™ slides. The pen array was leveled by monitoring the tip array through the glass slide support. When a tip made contact with the substrate surface, the amount of light reflected from the tip increased significantly, allowing for easy monitoring of when all or a substantial number of the tips were in contact with the substrate surface (e.g., when the tip array was "leveled"). The patterning environment was maintained at 20°C and 70% relative humidity. After the Polymer Pen Lithography process, the Codelink™ slide was incubated in a humidity chamber overnight, and rinsed with 0.02% sodium dodecyl sulfate to remove physiosorbed material. Fig. 7 shows the fluorescent image of the as generated 3×3 IgG arrays. Each IgG dot was made by contacting the tip array with the substrate for 3 seconds. The size of each IgG dot was 4.7 ± 0.7 μm.

[0067] The foregoing describes and exemplifies the invention but is not intended to limit the invention defined by the claims which follow. All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the materials and methods of this invention have been described in terms of specific embodiments, it will be apparent to those of skill in the art that variations may be applied to the materials and/or methods and in the steps or in the sequence of steps of the methods described herein while departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved.

[0068] All patents, publications and references cited herein are hereby fully incorporated by reference. In case of conflict between the present disclosure and incorporated patents, publications and references, the present disclosure should control.

REFERENCES

[0069]

24. For instance, DPN fabrication of a 10μm × 10μm MHA feature on a gold substrate with a conventional Si₃N₄ cantilever (radius of curvature = 20–60 nm) takes approximately 30 minutes.

Claims

1. A method for sub-micron scale printing of indicia on a substrate surface, comprising:
 - coating a tip array with a patterning composition, the tip array comprising a compressible elastomeric polymer comprising a plurality of non-cantilevered tips each having a radius of curvature of less than about 1 μm and a common substrate comprising an elastomeric layer comprising a compressible elastomeric polymer, the tip array and the common substrate fixed onto a rigid support and the tip array, common substrate, and rigid support together being at least translucent;
 - contacting the substrate surface for a first contacting period of time and at a first contacting pressure with all or substantially all of the coated tips of the array to deposit the patterning composition onto the substrate surface and form substantially uniform indicia with all or substantially all of said coated tips, the indicia having a dot size or line width of less than 1 μm.

2. The method of claim 1, wherein the tip array comprises a plurality of tips arranged in a regular periodic pattern.

3. The method of claim 1 or 2, wherein each tip has a radius of curvature of less than about 0.2 μm.

4. The method of any one of claims 1-3, wherein the polymer has a compression modulus of about 10 MPa to about 300 MPa.

5. The method of any one of claims 1-4, wherein the polymer comprises polydimethylsiloxane (PDMS).

6. The method of claim 5, wherein the PDMS comprises a trimethylsiloxy terminated vinylmethylsiloxane-dimethylsiloxane copolymer, a methyldiydrosiloxane-dimethylsiloxane copolymer, or a mixture thereof.

7. The method of any one of claims 1-6, wherein each tip of the tip array is identically-shaped.

8. The method of any one of claims 1-7, further comprising moving the tip array, the substrate surface, or both and repeating the contacting step for a second contacting period of time and at a second contacting pressure.

9. The method of any one of claims 1-8, comprising limiting lateral movement between the tip array and the substrate to form indicia comprising dots.

10. The method of claim 9, comprising controlling the contacting period of time, the contacting pressure, or both to form the dots with a diameter in a range of about 10 nm to about 500 μm.

11. The method of any one of claims 1-8, comprising controlling lateral movement between the tip array and the substrate surface during contacting and/or between one or more sets of contacting and depositing steps to form indicia comprising one or more of lines and a preselected pattern.

12. The method of any one of claims 1-11, comprising selecting for the tip array a compressible polymer which is Hookean under pressures of 10 MPa to 300 MPa.

13. The method of any one of claims 1-11, wherein the indicia have a dot size, or line width, of less than 100 nm.

14. The method of any one of claims 1-11 and 13, further comprising leveling the tips of the tip array with respect to the substrate surface by backlighting the tip array with incident light to cause internal reflection of the incident light from the internal surfaces of the tips; bringing the tips of the tip array and the substrate surface together along a z-axis up to a point of contact between a subset of the tips with the substrate surface, contact indicated by increased intensity of reflected light from the subset of tips in contact with the substrate surface, whereas no change in the intensity of reflected light from other tips indicates non-contacting tips; and tilting one or both of the tip array and the substrate surface with respect to the other in response to differences in intensity of the reflected light.
light from the internal surfaces of the tips, to achieve contact between the substrate surface and non-contacting tips,

wherein said tilting is performed one or more times along x-, y-, and/or z-axes.

15. The method of any one of claims 1-11 and 13, further comprising leveling the tips of the tip array with respect to the substrate surface by

backlighting the tip array with incident light to cause internal reflection of the incident light from the internal surfaces of the tips;

bringing the tips of the tip array and the substrate surface together along a z-axis to cause contact between the tips of the tip array and the substrate surface;

further moving one or both of the tip array and the substrate towards the other along the z-axis to compress a subset of the tips, whereby the intensity of the reflected light from the tips increases as a function of the degree of compression of the tips against the substrate surface; and

tilting one or both of the tip array and the substrate surface with respect to the other in response to differences in intensity of the reflected light from internal surfaces of the tips, to achieve substantially uniform contact between the substrate surface and tips,

wherein said tilting is performed one or more times along x-, y- and/or z-axes.

16. A tip array comprising a plurality of identically-shaped non-cantilevered tips fixed to a common substrate, the tips and common substrate formed from an elastomeric polymer, the elastomeric polymer of the tips having a compression modulus of about 10 MPa to about 300 MPa, and each tip having a radius of curvature of less than about 1 μm, characterized in that the common substrate is fixed onto a rigid support and the tip array, the common substrate and the rigid support are at least translucent.

Patentansprüche

1. Verfahren zum Drucken von Zeichen im Submikrometerbereich auf einer Substratoberfläche, das Folgendes umfasst:

Beschichten einer Spitzenanordnung mit einer Strukturierungszusammensetzung, wobei die Spitzenanordnung ein komprimierbares Elastomer-Polymer umfasst, das mehrere Spitzen ohne Biegebalken umfasst, die jeweils einen Krümmungsradius von weniger als etwa 1 μm aufweisen, und ein gemeinsames Substrat, das eine Elastomerschicht umfasst, die ein komprimierbares Elastomer-Polymer umfasst, wobei die Spitzenanordnung und das gemeinsame Substrat auf einem starren Träger fixiert sind und die Spitzenanordnung, das gemeinsame Substrat und der starre Träger gemeinsam wenigstens durchscheinend sind; Kontaktieren der Substratoberfläche für eine erste Kontaktzeitperiode und bei einem ersten Kontaktdruck mit allen oder im Wesentlichen allen der beschichteten Spitzen der Anordnung, um die Strukturierungszusammensetzung auf die Substratoberfläche abzuschneiden und im Wesentlichen gleichmäßige Zeichen mit allen oder im Wesentlichen allen der beschichteten Spitzen zu bilden, wobei die Zeichen eine Punktgröße oder eine Linienbreite von weniger als 1 μm aufweisen.

2. Verfahren nach Anspruch 1, wobei die Spitzenanordnung mehrere Spitzen umfasst, die in einem regelmäßigen periodischen Muster angeordnet sind.

3. Verfahren nach Anspruch 1 und 2, wobei jede Spitze einen Krümmungsradius von weniger als etwa 0,2 μm aufweist.

4. Verfahren nach einem der Ansprüche 1-3, wobei das Polymer einen Kompressionsmodul von etwa 10 MPa bis etwa 300 MPa aufweist.

5. Verfahren nach einem der Ansprüche 1-4, wobei das Polymer Polydimethylsiloxan (PDMS) umfasst.

6. Verfahren nach Anspruch 5, wobei das PDMS ein trimethylsiloxan-terminiertes Vinylmethylsiloxandimethylsiloxan-Copolymer, ein Methylhydrosiloxandimethylsiloxan-Copolymer oder eine Mischung davon umfasst.

7. Verfahren nach einem der Ansprüche 1-6, wobei jede Spitze der Spitzenanordnung identisch geformt ist.

10. Verfahren nach Anspruch 9, das Steuern der Kon-
taktzeitperiode, des Kontaktdrucks oder von beiden umfasst, um die Punkte mit einem Durchmesser in einem Bereich von etwa 10 nm bis etwa 500 μm zu bilden.

12. Verfahren nach einem der Ansprüche 1-11, das Auswählen eines komprimierbaren Polymers für die Spitzenanordnung umfasst, welches unter Drücken von 10 MPa bis 300 MPa dem Hookeschen Gesetz folgt.

13. Verfahren nach einem der Ansprüche 1-11, wobei die Zeichen eine Punktröße oder eine Linienbreite von weniger als 100 nm aufweisen.

14. Verfahren nach einem der Ansprüche 1-11 und 13, das ferner Nivellieren der Spitzen der Spitzenanordnung mit Bezug auf die Substratoberfläche durch Folgendes umfasst:

- Hinterleuchten der Spitzenanordnung mit einfallendem Licht, um eine interne Reflexion des einfallenden Lichts von den internen Oberflächen der Spitzen zu bewirken;
- Zusammenbringen der Spitzen der Spitzenanordnung und der Substratoberfläche entlang einer Z-Achse, um einen Kontakt zwischen den Spitzen der Spitzenanordnung und der Substratoberfläche zu bewirken;
- weitere Bewegung der Spitzenanordnung und/oder des Substrats zueinander entlang der Z-Achse, um einen Teilzusammenbruch der Spitzen zu komprimieren, wobei die Intensität des reflektierten Lichts von den Spitzen als eine Funktion des Kompressionsgrades der Spitzen gegen die Substratoberfläche zunimmt;

15. Verfahren nach einem der Ansprüche 1-11 und 13, das ferner Nivellieren der Spitzen der Spitzenanordnung mit Bezug auf die Substratoberfläche durch Folgendes umfasst:

- Hinterleuchten der Spitzenanordnung mit einfallendem Licht, um eine interne Reflexion des einfallenden Lichts von den internen Oberflächen der Spitzen zu bewirken;
- Zusammenbringen der Spitzen der Spitzenanordnung und der Substratoberfläche entlang einer Z-Achse, um einen Kontakt zwischen den Spitzen der Spitzenanordnung und der Substratoberfläche zu bewirken;
- weiteres Bewegen der Spitzenanordnung und/oder des Substrats zueinander entlang der Z-Achse, um einen Teilzusammenbruch der Spitzen zu komprimieren, wobei die Intensität des reflektierten Lichts von den Spitzen als eine Funktion des Kompressionsgrades der Spitzen gegen die Substratoberfläche zunimmt;

16. Spitzenanordnung, die mehrere identisch geformte Spitzen ohne Biegebalken umfasst, die auf einem gemeinsamen Substrat fixiert sind, wobei die Spitzen und das gemeinsame Substrat aus einem Elastomer-Polymer gebildet sind, das Elastomer-Polymer der Spitzen einen Kompressionsmodul von etwa 10 MPa bis etwa 300 MPa aufweist und jede Spitze einen Krümmungsradius von weniger als etwa 1 μm aufweist, dadurch gekennzeichnet, dass das gemeinsame Substrat auf einem starren Träger fixiert ist und die Spitzenanordnung, das gemeinsame Substrat und der starre Träger wenigstens durchscheinend sind.

Revendications

1. Procédé d'impression à l'échelle submicronique d'inscriptions sur la surface d'un substrat, comprenant :

- le revêtement d'un ensemble de pointes avec une composition de structuration, l'ensemble de pointes comprenant un polymère élastomère compressible comprenant une pluralité de pointes non en porte-à-faux ayant chacune un rayon de courbure inférieur à environ 1 μm et un substrat commun comprenant une couche élastomère compressible, l'ensemble de pointes et le substrat commun étant fixés sur un support rigide et l'ensemble de pointes, le substrat commun et le
support rigide étant ensemble au moins translucides ;
la mise en contact de la surface du substrat pen-
dant une première durée de contact et à une
première pression de contact avec la totalité ou
sensiblement la totalité des pointes revêtues de
l’ensemble pour déposer la composition de
structuration sur la surface du substrat et former
des inscriptions sensiblement uniformes avec la
totalité ou sensiblement la totalité desdites poin-
tes revêtues, les inscriptions ayant une taille de
point ou une largeur de ligne inférieure à 1 μm.

2. Procédé selon la revendication 1, dans lequel l’ensemble de pointes comprend une pluralité de pointes disposées suivant un motif périodique régulier.

3. Procédé selon la revendication 1 ou 2, dans lequel chaque pointe présente un rayon de courbure inférieur à environ 0,2 μm.

4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel le polymère présente un module de compression d’environ 10 MPa à environ 300 MPa.

5. Procédé selon l’une quelconque des revendications 1 à 4, dans lequel le polymère comprend du polydiméthylsiloxane (PDMS).

6. Procédé selon la revendication 5, dans lequel le PDMS comprend un copolymère vinylméthyléthoxane-diméthylsiloxane à terminaison triméthylsiloxane, un copolymère méthylhydrosiloxane-diméthylsiloxane ou un mélange de ceux-ci.

7. Procédé selon l’une quelconque des revendications 1 à 6, dans lequel chaque pointe de l’ensemble de pointes a une forme identique.

8. Procédé selon l’une quelconque des revendications 1 à 7, comprenant en outre le déplacement de l’ensemble de pointes, de la surface du substrat, ou des deux et la répétition de l’étape de mise en contact pendant une deuxième durée de contact et à une deuxième pression de contact.

9. Procédé selon l’une quelconque des revendications 1 à 8, comprenant la limitation du mouvement latéral entre l’ensemble de pointes et le substrat pour former des inscriptions comprenant des points.

10. Procédé selon la revendication 9, comprenant le contrôle de la durée de contact, de la pression de contact, ou des deux, pour former les points avec un diamètre dans une plage d’environ 10 nm à environ 500 μm.

11. Procédé selon l’une quelconque des revendications 1 à 8, comprenant le contrôle du mouvement latéral entre l’ensemble de pointes et la surface du substrat au cours de la mise en contact et/ou entre un ou plusieurs ensembles de mise en contact et de déposer pour former des inscriptions comprenant une ou plusieurs lignes et un motif présélectionné.

12. Procédé selon l’une quelconque des revendications 1 à 11, comprenant la sélection, pour l’ensemble de pointes, d’un polymère compressible qui est hoo-kéen à des pressions de 10 MPa à 300 MPa.

13. Procédé selon l’une quelconque des revendications 1 à 11, dans lequel les inscriptions ont une taille de point ou une largeur de ligne inférieure à 100 nm.

14. Procédé selon l’une quelconque des revendications 1 à 11 et 13, comprenant en outre la mise à niveau des pointes de l’ensemble de pointes par rapport à la surface du substrat en rétroéclairant l’ensemble de pointes avec de la lumière incidente pour causer une réflexion interne de la lumière incidente par les surfaces internes des pointes ; en rapprochant les pointes de l’ensemble de pointes et la surface du substrat le long d’un axe z jusqu’à un point de contact entre un sous-ensemble des pointes et la surface du substrat, le contact étant indiqué par une intensité accrue de la lumière réfléchie par le sous-ensemble de pointes en contact avec la surface du substrat, tandis qu’aucun changement d’intensité de la lumière réfléchie par d’autres pointes indique des pointes qui ne sont pas en contact ; et en basculant l’un ou les deux de l’ensemble de pointes et de la surface du substrat par rapport à l’autre en réponse à des différences d’intensité de la lumière réfléchie par les surfaces internes des pointes, pour réaliser le contact entre la surface du substrat et les pointes qui ne sont pas en contact, ledit basculement étant effectué une ou plusieurs fois le long des axes x, y, et/ou z.

15. Procédé selon l’une quelconque des revendications 1 à 11 et 13, comprenant en outre la mise à niveau des pointes de l’ensemble de pointes par rapport à la surface du substrat en rétroéclairant l’ensemble de pointes avec de la lumière incidente pour causer une réflexion interne de la lumière incidente par les surfaces internes des pointes ; en rapprochant les pointes de l’ensemble de pointes et la surface du substrat le long d’un axe z pour réaliser un contact entre les pointes de l’ensemble de pointes et la surface du substrat ; en déplaçant davantage l’un ou les deux de l’ensemble de pointes et du substrat l’un vers l’autre le long
de l’axe z pour comprimer un sous-ensemble des pointes, l’intensité de la lumière réfléchie par les pointes augmentant ainsi en fonction du degré de compression des pointes contre la surface du substrat ; et
en basculant l’un ou les deux de l’ensemble de pointes et de la surface du substrat par rapport à l’autre en réponse à des différences d’intensité de la lumière réfléchie par les surfaces internes des pointes, pour réaliser un contact sensiblement uniforme entre la surface du substrat et les pointes, ledit basculement étant effectué une ou plusieurs fois le long des axes x, y, et/ou z.

16. Ensemble de pointes comprenant une pluralité de pointes de formes identiques non en porte-à-faux fixées à un substrat commun, les pointes et le substrat commun étant formées d’un polymère élastomère, le polymère élastomère des pointes ayant un module de compression d’environ 10 MPa à environ 300 MPa, et chaque pointe ayant un rayon de courbure inférieur à environ 1 µm, caractérisé en ce que le substrat commun est fixé sur un support rigide et l’ensemble de pointes, le substrat commun et le support rigide sont aux moins translucides.
FIG. 4
FIG. 6
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 61047910 A [0001]
- US 61049679 A [0001]
- US 61076199 A [0001]
- US 5776748 A [0029]
- US 6596346 B [0029]
- US 6500549 B [0029]
- US 2004228962 A [0032]
- US 5472881 A [0055]
- US 5846909 A, McDevitt [0055]
- US 5908692 A, Hamers [0055]
- US 5942397 A, Tarlov [0055]
- WO 9948682 A, Waldeck [0055]

Non-patent literature cited in the description

- SCHMID et al. Macromolecules, 2000, vol. 33, 3042 [0030] [0031]
- BURWELL. Chemical Technology, 1974, vol. 4, 370-377 [0055]
- ALLARA ; NUZZO. Langmuir, 1985, vol. 1, 45 [0055]
- ILER. The Chemistry Of Silica. Wiley, 1979 [0055]
- ALLARA ; TOMPKINS. J. Colloid Interface Sci., 1974, vol. 49, 410-421 [0055]
• YAMAMOTO et al. Langmuir ACS ASAP [0055]
• STEINER et al. Langmuir, 1992, vol. 8, 2771-7 [0055]
• Li et al. Report, 1994, 24 [0055]
• MAGALLON et al. Book of Abstracts, 215th ACS National Meeting, 02 April 1998 [0055]
• CHIDSEY. Book of Abstracts, 214th ACS National Meeting, 07 September 1997 [0055]
• DAMMEL. Diazonaphthoquinone Based Resists. SPIE Optical Engineering Press, 1993 [0055]
• S. LENHERT et al. Small, 2007, vol. 3, 71 [0069]
• S. HONG; C. A. MIRKIN. Science, 2000, vol. 288, 1808 [0069]